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Whereas entropy can induce phase behavior that is as rich as seen in energetic systems, microphase sepa-
ration remains a very rare phenomenon in entropic systems. In this paper, we present a density functional
approach to study the possibility of entropy-driven microphase separation in diblock copolymers. Our model
system consists of copolymers composed of freely jointed slender hard rods. The two types of monomeric
segments have comparable lengths, but a significantly different diameter, the latter difference providing the
driving force for the phase separation. At the same time this system can also exhibit liquid crystalline phases.
We treat this system in the appropriate generalization of the Onsager approximation to chain-like particles.
Using a linear stability(bifurcation) analysis, we analytically determine the onset of the microseparated and the
nematic phases for long chains. We find that for very long chains the microseparated phase always pre-empts
the nematic. In the limit of infinitely long chains, the correlations within the chain become Gaussian and the
approach becomes exact. This allows us to define a Gaussian limit in which the theory strongly simplifies and
the competition between microphase separation and liquid crystal formation can be studied essentially analyti-
cally. Our main results are phase diagrams as a function of the remaining model parameters: i.e., the diameter
ratio, the length ratio, and the number ratio of the two types of segments. We also determine the amplitude of
the inhomogeneous order as a function of position along the chain at the onset of the microphase separation
instability. Finally, we give suggestions as to how this type of entropy-induced microphase separation could be
observed experimentally.

DOI: 10.1103/PhysRevE.70.031503 PACS number(s): 64.70.Ja, 82.35.Jk, 83.80.Uv, 64.70.Md

I. INTRODUCTION

Microphase separation(MPS) is the phenomenon where
an initially homogeneous phase develops an inhomogeneous
spatial structure on a microscopic scale. Usually such sys-
tems consist in part of thermodynamically incompatible
components that left by themselves would tend to(macro-
scopically) phase separate. However, due to additional con-
straints of a physical or chemical nature the spatial separa-
tion between the components is prevented from increasing
beyond a microscopic length scale. This leads to phases in
which the components can demix only locally. There are a
few archetypical examples of systems showing MPS:(i) Two
(usually flexible) polymers species that have an unfavorable
mutual interaction energy which are joined together by a
chemical bond. This type of block copolymers[1–3] shows a
wealth of microphases.(ii ) Side-chain liquid crystalline
polymers (LCP’s) contain liquid crystal-forming groups
linked to polymer backbones through flexible spacers. The
most prominent phase of these systems is the smectic, where
the LC groups form orientationally ordered layers separated
by disordered lamellae containing the poymeric backbones
[4,5]. (iii ) Ternary systems consisting of water, oil, and an
amphiphilic surfactant. These systems can show a variety of
microstructured phases, with the amphiphilic surfactant sta-
bilizing the oil-water interfaces and thus preventing “mac-

rophase separation”[6,7]. All three of the cases above are
examples of thermotropic systems, i.e., systems in which the
phase behavior is governed by temperature as a controlling
variable, reflecting the dominance of energetic effects.

Recently, MPS was observed in an entirely new class of
systems. Binary mixtures of bacteriophage viruses and
(small) latex spheres with varying size ratios showed a sur-
prisingly rich phase behavior, including a lamellar phase[8].
In this phase, the lamellae are defined by a “smectic” ar-
rangement of the rodlike virus particles with the spherical
latex particles in between the layers[8,9]. These results are
remarkable for two reasons. First, unlike the previous arche-
typal cases of MPS, we are dealing with a binarymixture
which phase separates on a microscopic scale. There is no
“hard” constraint like a chemical bond(or a surfactant spe-
cies) that prevents the two species from phase separating on
a macroscopic scale, and both species remain in a fluid state
within the layers. Second, it was argued that the virus par-
ticles as well as the latex spheres can be modeled to a good
extent to interact as hard bodies. Consequently, the driving
force causing this MPS must be of an entropic nature. This is
also in stark contrast with MPS in block copolymers, LCP’s,
and amphiphiles where the dependence on temperature is
strong and hence indicates a predominantly energetic effect.
The possibility of this type of MPS was already explored in
computer simulations[10] and found to be qualitatively well
described within the so-called second virial approximation
[10,11], the validity of which can only be guaranteed at low
densities. However, as the experimental systems are far from
dilute the latter treatment may not capture all the essential
ingredients. It has been argued that MPS in binary mixtures
may be caused by the so-called depletion effect[8,9], which
is predominantly a many-body interaction effect and quanti-

*Present address: Heinrich-Heine-Universität Düsseldorf, Institut
für Theoretische Physik II Universitätsstraße 1, Gebäude 25.32,
D-40225 Düsseldorf, Germany.
Electronic address: wessels@thphy.uni-duesseldorf.nl

PHYSICAL REVIEW E 70, 031503(2004)

1539-3755/2004/70(3)/031503(16)/$22.50 ©2004 The American Physical Society70 031503-1



tatively not well described with a second-virial theory
[10,11]. Consequently, a more accurate approach would be
required, certainly in order to resolve in detail what prevents
the system from demixing macroscopically.

That entropyper secan be the driving force for phase
transitions has by now been well established. There are many
examples ranging from ordering in monodisperse systems
like the liquid-to-crystal transition in hard spheres[12] and
the isotropic-to-nematic transition in slender hard rods[13],
to demixing in binary mixtures, like, e.g., the Asakura-
Oosawa(AO) mixture of hard spheres and ideal spheres,
which is used as a model for colloid-polymer mixtures
[14–16]. In essence, the physical mechanism in all these sys-
tems is the same; the gain in effective “free volume” avail-
able to the particles upon ordering offsets the loss of entropy
of disorder or mixing, respectively. For the AO mixture this
is usually referred to as the previously mentioned depletion
effect; the ideal polymers are depleted from a shell around
the impenetrable colloids. Overlap of these depletion shells
increases the free volume available to the polymers and
hence this system phase separates into a colloid-rich and a
colloid-poor fluid [17]. However, whereas entropy can in-
duce phase behavior that is at least as rich as seen in ener-
getic systems, MPS remains a very rare phenomenon in en-
tropic systems[18].

A variant of the depletion effect was recently discovered
in theoretical treatments of binary mixtures of thin and thick
hard rods[19,20]. These systems are seen to phase separate
in two isotropic fluid phases due to depletion. Here, however,
the depletion interaction appears as a genuine two-body ef-
fect [20], in contrast to the AO system, in which more-than-
two-body effects play a prominent role[21], e.g., consider
the polymer-induced attraction between two colloids which
involves at least two colloids and one polymer. Conse-
quently, the depletion effect in these mixtures of rods sur-
vives the Onsager limit(length@width) applied to both spe-
cies, and for rods with sufficiently asymmetric widths,
preempts the usual transition to the orientationally ordered
nematic phase[19,20,22,23]. These predictions have since
been corroborated by simulations[24,25]. In the present pa-
per, we propose to use the two-body depletion effects be-
tween slender rods of different diameters to construct a sys-
tem which shows entropy-induced MPS. Taking our cue
from the concepts developed in the field of thermotropic
block copolymers, we connect a chain of freely rotating
“thick” hard rods to a chain of freely rotating “thin” hard
rods. The above-mentioned unfavorable depletion interaction
between these two types of rods provides the tendency to
fully demix, whereas the joint(connecting the two strands)
prevents this. The so-constructed system of freely jointed
hard diblock copolymers(HDC) is in our view one of the
most simple systems conceivable showing entropy-induced
MPS. Furthermore, and contrary to the case of the binary
rod-sphere mixtures, where MPS may be the result of a
subtle interplay of various many-body effects, the physical
mechanism is both clear and robust. Of course, there is as yet
no direct candidate for an experimental system well de-
scribed. However, it may certainly be possible for experi-
mentalists to connect(possibly long and flexible) chemically
inert polymers to the ends of virus particles like tobacco

mosaic virus(TMV ) [26,27]. Together with an appropriate
solvent this may mimic an effective rod-coil system with
only hard body interactions. In this system, the polymer tails
are likely to stabilize the smectic phase of the virus particles
and this could be viewed as a microseparated phase.

In order to describe this system we employ a density func-
tional theory in the second-virial or Onsager approximation
starting from first principles. We assume that multiple over-
laps between two chains as well as self-overlaps of the
chains are unimportant. All three of the above approxima-
tions, common in theoretical treatments of LCP’s[28–31],
should become exact in the Onsager limit where the lengths
of the rods involved are much larger than their widths. The
stationarity equations that determine the stable phases in our
theory are solved locally by means of a bifurcation(or,
equivalently, linear stability) analysis of the isotropic fluid
phase[32,33]. Apart from fluctuations with a nonzero wave
vector corresponding to a microseparated phase, we also
consider spatially homogeneous fluctuations with nematic
symmetry, in order to study the competition between these
two types of ordering. For both phases, we obtain closed
analytical expressions for the spinodal density. We find that
for long chains and nonzero difference in the widths, the
microseparated phase always pre-empts the nematic.

Naturally we want to make contact with the vast amount
of literature on thermotropic block copolymers in the weak
segregation limit. Most of these follow the original treatment
proposed in the seminal paper by Leibler[34]. Leibler con-
sidered diblock copolymers interacting via the heuristic
Flory parameterx and constructed a Landau expansion in the
average composition fluctuations. By applying the “random
phase approximation” and retaining only leading orders of
the Fourier modes, he was able to map out more or less the
complete phase diagram. Subsequent refinements extended
the theory to the strong segregation regime[35], added fluc-
tuations [36], and included extra phases[37], but did not
change the essence of the approach. Leibler’s results have
been confirmed qualitatively by experiments(Ref. [1] and
references therein) and, for finite chains lengths[36], by
simulations (Refs. [38,39] and references therein). The
Leibler approach treats the correlations within the polymers
on the Gaussian level[1]. We can therefore connect to this
approach by applying the Gaussian limit to our model of
freely jointed HDC’s. Within this limit our theory becomes
equivalent to that of Leibler as far as the treatment of the
intrachain interactions is concerned. However, theinterchain
interactions between the polymers are essentially different in
the present case, as they are of a geometric nature, i.e., to-
tally fixed by the dimensions of the composing hard rods. In
the Leibler theory, these interactions are described generi-
cally by means of the freely adjustable Flory parameter. A
full exploration of the parallels between the two approaches,
however, was beyond the scope of this work.

Another class of systems, that appears as a special case of
our model, is the well-studied rod-coil diblock copolymers.
These consist of one stiff(rodlike) block and a much more
flexible part. In such systems, liquid crystalline ordering
competes with MPS and a number of theoretical studies have
been devoted to the subject. Most of these combine the
Leibler approach with an additional Maier-Saupe anisotropic
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orientational interaction resulting in the appearance of a
nematic phase(and sometimes an additional smectic phase)
in the phase diagram, besides the various microseparated
phases[40–46]. However, the ratio of the Flory and the
Maier-Saupe interaction parameters in these approaches is
rather arbitrary, whereas in the present approach microsepa-
rated and nematic ordering both result from the same geo-
metric origin with no room for additional tuning.

Finally, there has been some related work on more ideal-
ized but conceptually simpler systems in the context of en-
tropic liquid crystals. Hołyst considered parallel nail-shaped
particles which showed a nematic-to-smectic–Ad transition
[47]. As a model for surfactants, Bolhuis and Frenkel studied
nonadditive complexes of hard spheres and ideal
spherocylinder-tails[48] where Schmidt and von Ferber used
hard slender rods for the tails[49]. Of particular relevance to
the present work is Ref.[50] where Düchs and Sullivan in-
vestigate the phase behavior of hardwormlike diblock co-
polymers. However, in this latter work only differences in
persistence length are considered and not in thickness be-
tween the two components. Consequently they only find
competition between a nematic and a(orientationally or-
dered) smectic phase, instead of a(orientationally disor-
dered) lamellar phase. Moreover, only numerical solutions to
the stationarity equations are presented, whereas we are able
to obtain additional analytical insight through the stability
analysis of the isotropic fluid phase. Last, van Duijneveldt
and Allen used Monte Carlo simulations to study the effect
of flexible tails on the phase behavior of spherocylinders
[51]. This was later extended by Casey and Harrowell to
rod-coil molecules of which the isolated rods do not possess
a smectic phase[52].

We show that for very long HDC’s the nematic is always
pre-empted by the microseparated phase. Although our
theory is formulated for chains with a finite number of rod-
like segments, we devote the major part of this paper to
chains with an infinite number of segments in which the
correlations between the segments are Gaussian. We formu-
late a consistent Gaussian limit, in which the number of
model parameters reduces to just three. The limit is chosen in
such a way that we can still consider the competition be-
tween MPS and nematic ordering. The most prominent re-
sults are phase diagrams as a function of the model param-
eters, showing the regions of stability of the microseparated
or nematic phases. Furthermore, exploiting the features of
the bifurcation analysis, we are able to calculate the relative
inhomogeneous order along the polymer in the microsepa-
rated phase at the bifurcation point. The outline of the paper
is as follows: in Sec. II we define the model and develop the
formalism. In Sec. III we briefly discuss the symmetry of the
phases involved. The bifurcation analysis is the topic of Sec.
IV and the Gaussian limit is applied in Sec. V. Section VI is
the results section and we end with a discussion in Sec. VII.

II. MODEL AND FORMALISM

We consider a monodisperse fluid ofN diblock copoly-
mers in a volumeV. Each polymer is a chain of freely jointed
cylindrical rods connected end to end where the firstMA rods

are of typet=A having lengthlA and widthdA and the last
MB rods are of type B with dimensionslB anddB (see Fig.
1). We assume that both types of rods are very slender,lt

@dt, with tP hA,Bj, hard bodies, i.e., impenetrable to other
rods. The total number of segments in a chain isM =MA
+MB and every segment has a labelmP h1, . . . ,Mj specify-
ing its position in the chain. The state of a segment is de-
scribed by the positionr m of its center of mass and an ori-
entation, being a unit vectorv̂m pointing along its long axis
in the direction of increasingm. The configuration of a whole
chain j is fully characterized by the position of one of its
segments(say the first;r 1) and the orientations of all of
them,V=hv̂1, . . . ,v̂Mj, soj=hr 1,Vj. The position of a seg-
ment m is then given by r m=r 1+ 1

2ok=1
m−1slkv̂k+ lk+1v̂k+1d

wherelk= lA if køMA and lB if kùMA +1.
In density functional theory(DFT) the free energy of a

(possibly inhomogeneous) fluid of molecules is expressed as
a functional of the single-molecule configuration distribution
function, rs1dsjd [53]. Using the second-virial(or Onsager)
approximation it is formulated as follows[54]:

bFfrs1dg =E djrs1dsjdhlnfVTrs1dsjdg − 1j

−
1

2
E E djdj8rs1dsj8drs1dsj8dFsj,j8d. s1d

The integrals are over single-molecule configuration space
where edj=edr 0dV and edV=epm dv̂m and edv̂
=e0

2pdfe0
pdu sin u. Further,rs1dsjd is normalized as follows:

ers1dsjddj=N. The factorb equalsskBTd−1 in which kB is
Boltzmann’s constant andT the temperature. The volumeVT
we call the “thermal volume” and is a product of the de
Broglie thermal wavelengths of the molecules[54,55]. The
quantity Fsj ,j8d is the Mayer function of two molecules
with configurationsj and j8. As we are dealing with hard
segments, the potential energyvsj ,j8d between two chains is
` when they overlap and 0 when they do not. Consequently,
the Mayer function is given by

Fsj,j8d = expf− bvsj,j8dg − 1 =H− 1 if overlap

0 if no overlap.

s2d

The configurations of both chains involved can be highly
irregular and the dependence ofF very complicated. There-
fore we approximate the chain-chain Mayer functionF by
the sum of all the segment-segment Mayer functionsfm,m8,

FIG. 1. An example of a hard diblock copolymer. A freely
jointed chain ofMA hard rods with dimensionslA anddA (left side)
are connected to a freely jointed chain ofMB hard rods with dimen-
sionslB anddB (right side).
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Fsj,j8d = o
m,m8=1

M

fm,m8sr m − r m8
8 ,v̂m,v̂m8

8 d. s3d

This expression, to which only individual pairs of segments
contribute, is actually the first term in a systematic expansion
of the Mayer function. Higher order terms involve interac-
tions between more than two segments simultaneously[31].
At this point we note that apart from(i) the second virial
approximation and(ii ) the above expression for the chain-
chain Mayer function, another(iii ) approximation has been
made. In this formalism the chains are allowed to self over-
lap, i.e., other than the spatial constraint that successive seg-
ments are connected to each other there are no interactions
within the chain. All three of these approximations are com-
monly used and corrections to the first two are small when
lt@dt [28–30]. The neglect of the effects of self-overlap is
assumed to be reasonable in a dense polymer melt[56]
where screening effectively compensates the intramolecular
interactions and as a result interactions between distant parts
of the same chain are indistinguishable from interactions
with the average environment because of loss of intrachain
correlations.

In thermodynamic equilibrium, the free energy reaches a
minimum and the functional is stationary. Therefore we con-
sider the variation of Eq.(1) with respect tors1d,

d

drs1dsjd
bF − bm = 0 s4d

with the chemical potentialm playing the role of Lagrange
multiplier needed to enforce normalization. Eliminatingm
from Eq.(4) yields the(self-consistent) stationarity equation,

rs1dsjd =

N expFE dj8rs1dsj8dFMsj,j8dG
E dj expFE dj8rs1dsj8dFMsj,j8dG . s5d

In order to proceed, we define the single-segment distri-
bution function (SDF) (of segmentm), rmsr m,v̂md, in the
following way:

rmsr m,v̂md =E p
kÞm

dv̂kr
s1dsjd =E p

kÞm

dv̂kr
s1d
„r 1sr m,Vd,V…,

s6d

in which r 1 is given byr m−1/2ok=1
m−1slkv̂k+ lk+1v̂k+1d and the

product is over all segmentsk but themth. Integrating Eq.
(5) over all v̂k except forv̂m as well and using Eq.(3) we
obtain a set of equations,

rmsr m,v̂md =
N

Q
E p

kÞm

dv̂kexpF o
k,k8=1

M

3E dr k8
8 dv̂k8

8 rk8sr k8
8 ,v̂k8

8 dfk,k8sr k − r k8
8 ,v̂k,v̂k8

8 dG
s7d

whereQ is the normalization factor; i.e., the SDF’s are nor-
malized in the same way asrs1d: i.e., edrdv̂rmsr ,v̂d=N.

III. PHASE BEHAVIOR AND ORDER PARAMETERS

A. Isotropic phase

At low polymer number density,n=N/V, the system is in
the isotropic fluid phase, andrmsr m,v̂md is a constant, so due
to normalization,rm

sisod=n/4p. Consequently,

E dr 8dv̂8rm
sisodfk,k8sr k − r 8,v̂k,v̂8d

= −
n

4p
E dv̂8lklk8sdk + dk8dsin gsv̂k · v̂8d

= −
1

4
phlklk8sdk + dk8d, s8d

where gsv̂ ·v̂8d is the planar angle betweenv̂ and v̂8 and
one can recognizelklk8sdk+dk8dsin gsv̂ ,v̂8d as the excluded
volume of two rodsk andk8 with respective orientationsv̂
andv̂8. This yields the following normalization factor in the
isotropic phase:

Qiso = s4pdMA+MBV expF−
1

2
pn3sMA

2 lA
2 dA

+ MAMBlAlBsdA + dBd + MB
2 lB

2dBdG . s9d

Choosing the dimensions of rod A as units, we define

l̃ = lB/lA, d̃ = dB/dA, M̃ = MB/MA , s10d

and a dimensionless segment density in a symmetric way,

ñ = 2nsMAlA
2 dA + MBlB

2dBd. s11d

Then, Eq.(9) becomes

Qiso = s4pdMV expF−
p

4
ñM

s1 + M̃l̃ds1 + M̃l̃d̃d

s1 + M̃ds1 + M̃l̃2d̃d
G , s12d

where we have also usedM =MA +MB. We also note that the
normalization factorQiso is exactly the partition sum of the
block copolymers in the isotropic phase.

B. Nematic phase

In the (uniaxial) nematic phase, there is orientational or-
der with respect to a directionn̂, however, the system is still
spatially homogeneous. Therefore the SDF can be expanded
in Legendre polynomials,
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rmsr ,v̂d = rmsv̂d = no
j=0

`
2j + 1

4p
am

s jdPjsv̂ · n̂d, s13d

with coefficients

nam
s jd =E dv̂8Pjsv̂8 · n̂drmsv̂8d. s14d

Due to normalization,am
s0d=1 as it is in the isotropic phase

and due to up-down symmetry of the nematic, allam
s jd=0 for

odd j (in the isotropic fluid,am
s jd=0 for all j Þ0). The lowest-

order coefficient different in the nematic and the isotropic
phase isam

s2d which is the usual Maier-Saupe order parameter.
The physical incentive to form a nematic is that the average
excluded volume between rods is smaller(and therefore the
average free volume available to the rods is larger) in the
nematic phase[13].

C. Microseparated phase

Microseparated phases consist of alternating regions rich
either in type-A or type-B rods and are typically governed by
a single dominant wavelength. These phases exist in a vari-
ety of types exhibiting various degrees of symmetry, e.g.,
lamellar, hexagonal, bcc, and even more exotic morphologies
like the gyroid phase[1,37]. In this paper we do not consider
the various symmetries of microseparated phases but focus
on the magnitude of the dominant wavelength and the den-
sity for which it becomes unstable. To that end, we observe
that the SDF can be expanded in terms of plane waves,

rmsr ,v̂d = o
qPL

r̂msq,v̂deiq·r , s15d

with L some set of wave vectors and the “coefficients” given
by

r̂msq,v̂d = V−1E dr 8e−iq·r8rmsr 8,v̂d. s16d

In general there will be orientational order within the do-
mains and consequently the coefficients still depend on the
orientation. If needed, one could proceed and expand these
coefficients again in spherical harmonics. However, in order
to simplify the analysis, this additional order in the mi-
croseparated phase is usually neglected, which, as we will
show in Sec. V, is permitted in the case of infinitely long
polymers. In homogeneous fluid phases like the nematic, the
SDF is independent on the spatial coordinate and only the
coefficientr̂ms0,v̂d at zero wave number survives.

IV. BIFURCATION ANALYSIS

A. Bifurcation equation

At low densities, the isotropic phase is the globally stable
phase, but at higher densities it will become unstable with
respect to lower symmetry phases exhibiting some form of
ordering. Points where these lower-symmetry solutions
branch off the isotropic solution are called bifurcation points
and the densities at which this happens are called bifurcation

densities. Different solutions may bifurcate at different den-
sities from the isotropic phase. Generically the particular so-
lution which bifurcates at the lowest density, will give rise to
the ordered phase that is the first to become thermodynami-
cally stable with respect to the isotropic phase. In this sec-
tion, we perform a linear stability(or bifurcation) analysis
around the isotropic parent solution, along the lines of Refs.
[31–33]. Consequently, we assume isotropic distributions
with a perturbation of lower symmetry,

rmsr ,v̂d =
n

4p
+ «rm,1sr ,v̂d, s17d

where the proper normalization of the SDF requires
edrdv̂rm,1sr ,v̂d=0. Inserting this in the stationarity equa-
tions (7) we linearize the exponent with respect to the infini-
tesimal parameter«,

expF o
k,k8=1

M E dr 8dv̂8rk8sr 8,v̂8dfk,k8sr k − r 8,v̂k,v̂8dG
= expF−

1

4
pn o

k,k8=1

M

lklk8sdk + dk8dG
3S1 + «o

k,k8
E dr 8dv̂8rk8,1sr 8,v̂8d

3fk,k8sr k − r 8,v̂k,v̂8dD . s18d

Equating orders in«, to zeroth order, we re-obtain the iso-
tropic result, Eq.(9). To first order this yields the so-called
bifurcation equations,

rm,1sr m,v̂md =
n

s4pdM E p
k9Þm

dv̂k9o
k,k8
E dr 8dv̂8

3rk8,1sr 8,v̂8dfk,k8sr k − r 8,v̂k,v̂8d. s19d

These can be interpreted a generalized linear eigenvalue
problem with eigenfunctionsrm,1sr ,v̂d and eigenvaluen, the
bifurcation density. There is an infinite hierarchy of solutions
to Eq. (19) for varying degrees of symmetry. However, we
are only interested in the one(or the few) corresponding to
the lowest bifurcation density. Note that the explicit depen-
dence on the normalization factorQ has dropped out since
integration overr m and v̂m trivially yields zero on the left
hand side by definition and, after rearrangement of the inte-
grals made possible by the finite range of the Mayer func-
tions fk,k8, also on the right hand side.

In order to make the bifurcation equation, Eq.(19), more
transparent we define for the moment as an auxiliary quantity
the fields

Hksr k,v̂kd = o
k8
E dr 8dv̂8rk8,1sr 8,v̂8dfk,k8sr k − r 8,v̂k,v̂8d

s20d

in terms of which the bifurcation equation becomes
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rm,1sr m,v̂md =
n

s4pdMo
k
E p

k9Þm

dv̂k9Hksr k,v̂kd. s21d

However, this fieldHk is a function ofr k andv̂k whereas on
the left of Eq.(21) we have a function ofr m and v̂m. And
these are not independent since

r m = r k + Pk,m, s22d

where the vectorial “path”Pk,m betweenk andm is given by

Pk,m =
1

2 o
k8=k

m−1

slk8v̂k8 + lk8+1v̂k8+1d, s23d

for k,m. Further,Pm,m=0 and the case ofk.m can be
obtained by realizing thatPk,m=−Pm,k. Consequently, the in-
terlying orientational integrations in Eq.(21) have to make
the connection and “transfer” the field from segmentsk to m.

We return to Eq.(19) and insert the constraint, Eq.(22)
via a delta function

rm,1sr m,v̂md =
n

s4pdMo
k
E p

k9Þm

dv̂k9E dr kdsr m − r k + Pm,kd

3 o
k8
E dr 8dv̂8rk8,1sr 8,v̂8d

3fk,k8sr k − r 8,v̂k,v̂8d. s24d

Next, we observe that in Eq.(24) there appear two spatial
convolution integrals. Therefore it makes sense to proceed
with a Fourier transform[i.e., ĝsqd=V−1edr me−iq·r mgsr md],
yielding

r̂m,1sq,v̂md =
n

s4pdMo
k
E p

k9Þm

dv̂k9e
−iq·Pk,m

3 o
k8
E dv̂8r̂k8,1sq,v̂8df̂k,k8sq,v̂k,v̂8d.

s25d

This is the general form of the bifurcation equation for a
lower-symmetry solution bifurcating off the isotropic-fluid
parent solution. Note that theq vector is the same for all
segments. Furthermore, at this point, we have not yet speci-
fied the internal structure of the polymer, only that it is a
chain of cylindrically symmetric(rodlike) segments which
contains no closed loops. Concerning the rodlike segments,
the Fourier transformed Mayer functionf̂k,k8 is calculated in
Appendix A and is for very slender segmentsslk@dkd given
by

f̂k,k8sq,v̂k,v̂k8
8 d = − lklk8sdk + dk8duv̂k ∧ v̂k8

8 u

3 j0S1

2
lkq · v̂kD j0S1

2
lk8q · v̂k8

8 D , s26d

where we have already discarded higher-order terms contain-
ing sdk+dk8dq as the wave vector will be at most of order
1/lA,B so these terms will be small. The functionj0sxd

=sin x/x is the spherical Bessel function of zeroth order. We
proceed by solving Eq.(25) to which we refer asthe bifur-
cation equation from now on.

B. Nematic solution

We first consider the nematic solution, which is also the
simplest. In the nematic phase,q=0 and the orientational
integrals in the bifurcation equation are trivial and it reduces
to

r̂m,1sv̂md =
n

4p
o
k8
E dv̂8r̂k8,1sv̂8df̂m,k8sv̂m,v̂8d, s27d

wherer̂m,1sv̂md= r̂m,1s0,v̂md and

f̂m,k8sv̂m,v̂k8
8 d = − lmlk8sdm + dk8duv̂m ∧ v̂k8

8 u s28d

is simply minus the excluded volume of two rods with fixed
orientations,v̂m and v̂k8. This bifurcation equation is the
same as that of a mixturedisconnectedrods [20], so for
orientational ordering the connectivity of the rods within the
chains does not play a role. The kernelf̂m,k8 is now only a
function of the planar angleg between the orientations of the
rods, uv̂m3v̂k8

8 u= u sin gsv̂m·v̂k8du. Consequently, due to this

uniaxial symmetry the eigenfunctions off̂m,k8 and therefore
of Eq. (27) are simply the Legendre polynomialsPj (see
Appendix B),

E dv̂8f̂m,k8sv̂,v̂8dPjsv̂8 · n̂d = − lmlk8sdm + dk8dsjPjsv̂ · n̂d,

s29d

with sj the Legendre coefficients ofusin gu. In case of the
nematic phase, it is well known that this becomes first un-
stable with respect to the modej =2, so r̂m,1sv̂md
=s5/4pdncm

s2dP2sv̂m·n̂d with cm
s2d the Legendre coefficients.

Then, the bifurcation equation becomes

cm
s2d = −

n

4p
o
k8

lmlk8sdm + dk8ds2ck8
s2d s30d

with s2=−p2/8. This is anM 3M matrix eigenvalue equa-
tion and therefore in principle much too large to solve. How-
ever, by observing that the geometric factor on the right hand
side does not so much depend on the segmentsm,k8 but on
whether they belong to A or B, we can split the summation,
ok8=otok8Pt with t=A,B. Then, we can define the “type-
average” coefficients,ct

s2d=s1/MtdomPtcm
s2d and Eq.(30) be-

comes

ct
s2d =

pn

32 o
t8=A,B

Mt8ltlt8sdt + dt8dct8
s2d. s31d

Rewriting this in terms of dimensionless quantities,

c2 =
pñ

32s1 + M̃l̃2d̃d
G2c2 s32d

with
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G2 = 3 1
1

2
M̃l̃s1 + d̃d

1

2
l̃s1 + d̃d M̃l̃2d̃ 4 and c2 = ScA

s2d

cB
s2d D

s33d

we now have reduced the problem to a simple 232 matrix
eigenvalue equation. There are two solutions for the density,

ñ± =
32s1 + M̃l̃2d̃d

p
strG2 ± Îtr2G2 − 4detG2d/s2detG2d,

s34d

with det and tr denoting the determinant and trace, respec-
tively. As the determinant ofG2 is negative, only the minus
sign in Eq.(34) yields a positive bifurcation densityñnem, so

ñnem=
32s1 + M̃l̃2d̃d

p
strG2 − Îtr2G2 − 4detG2d/s2detG2d.

s35d

Note that, within the context of the model as introduced in
Sec. II, this analytic expression for the nematic bifurcation is
an exact result. In the wider context of liquid crystalline
polymers, a more general derivation of the nematic bifurca-
tion density can be found in Ref.[33].

C. Microseparated solution

In a microseparated phase, the wave vectorq is nonzero
and the orientational integrals in the bifurcation equation
have to be performed explicitly. However, we can make
much progress by observing that most of the integrals are
still trivial, i.e., if segmentk9 does not lie betweenk andm it
does not help to “pass on” the infinitesimal fieldHk
or equivalently, there is no dependence in the factor
exps−iq ·Pk,md. Consequently, theseM − um−ku−1 integra-
tions each contribute a factoredv̂=4p which is in total
s4pdM−um−ku−1. On the other hand, concerning the intermedi-
ate segmentsk9 betweenk and m; the only dependence on
v̂k9 is in the pathPk,m. Therefore, suppose for a moment that
k+1,m,

E p
k9=k+1

m−1

dv̂k9e
−iq·Pk,m

= e−s1/2diq·lkv̂kS p
k9=k+1

m−1 E dv̂e−iq·lk9v̂De−s1/2diq·lmv̂m, s36d

and it is easy to show that

E dv̂e−iq·lk9v̂ = 4p
sin qlk9

qlk9
= 4p j0sqlk9d, s37d

where we have usedq=qq̂ with q being the length and the
unit vector q̂ the direction of the wave vector. Whenm
+1,k, there is an extra minus sign asPm,k=−Pk,m but this
does not change the result(37), only the end factors in Eq.
(36). Consequently, we define the factor

Fk,msqd = 5 p
k9=k+1

m−1

j0sqlk9d for k , m− 1

1 for k = m− 1,m,

s38d

which is symmetric soFk,msqd=Fm,ksqd. Inserting this in the
bifurcation equation yields

r̂m,1sq,v̂md =
n

4p
o
k8
E dv̂8r̂k8,1sq,v̂8df̂m,k8sq,v̂m,v̂8d

+
n

s4pd2o
kÞm

esm,ks1/2diq·lmv̂mFm,ksqdo
k8

3E dv̂dv̂8cosS1

2
q · lkv̂Dr̂k8,1sq,v̂8d

3f̂k,k8sq,v̂,v̂8d, s39d

where sk,m=sgnsm−kd is the sign ofm−k. Instead of the
other “end factor” expssm,k

1
2iq ·lkv̂d we have used

coss 1
2q ·lkv̂d as within the integral only the even part inq

survives. The first term on the right hand side is due to the
infinitesimal fieldHm directly on segmentm; the second term
contains the contributionsHk on segmentskÞm which are
being transferred to segmentm via Fm,k. At this point we
note that it is impossible to solve Eq.(39) analytically for
generalq and we will introduce an approximation justified
for very long polymers,MA ,MB@1. In this case the relevant
wave vector is expected to be small in magnitude and con-
sequently, the end factors as well as the wave dependence of
f̂k,k8 are negligible. Therefore we replace them by their ze-
roth order approximations inq,

f̂k,k8sv̂k,v̂k8
8 d = − lklk8sdk + dk8duv̂k ∧ v̂k8

8 u s40d

and

expSsm,k
1

2
iq · lmv̂mD = 1,

cosS1

2
iq · lkv̂kD = 1. s41d

Then the bifurcation equation becomes

r̂m,1sq,v̂md =
n

4p
o
k8
E dv̂8r̂k8,1sq,v̂8df̂m,k8sv̂m,v̂8d

+
n

s4pd2o
kÞm

Fm,ksqdo
k8
E dv̂dv̂8r̂k8,1sq,v̂8d

3f̂k,k8sv̂,v̂8d, s42d

where again as in the case of the nematic solutions,
f̂k,k8sv̂ ,v̂8d has the convenient property that it mapsPj on
Pj. Then the only mode for which the second term on the
right hand side of Eq.(42) survives(and we have wave de-
pendence) is for P0. [For j Þ0 we simply re-obtain the nem-
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atic bifurcation equation, Eq.(30).] Consequently, integrat-
ing both sides overv̂m, we obtain

cm
s0dsqd = −

n

4p
o

k

Fm,ksqdo
k8

lklk8sdk + dk8ds0ck8
s0dsqd,

s43d

where we have definedcm
s0dsqd=edv̂mr̂m,1sq ,v̂md and where

E dv̂f̂k,k8sv̂,v̂8d = − lklk8sdk + dk8ds0, s44d

with s0=p2. The rest of the analysis is similar to the nematic
case: again we have anM 3M eigenvalue equation and we
make use of the property of the geometric factor that it de-
pends on the types involved and not on the segment labels,
hence ok8=ot8ok8Pt8 with t8=A,B. Defining ct

s0dsqd
=s1/MtdokPtck

s0dsqd and Ft,t8=s1/MtMt8domPtok8Pt8Fm,k,
Eq. (43) becomes

ct
s0dsqd = −

pn

4 o
t8

Ft,t8sqdo
t9

Mt8Mt9lt8lt9sdt8 + dt9dct9
s0dsqd.

s45d

Rewriting in terms of dimensionless quantities, we obtain

c0sqd = −
pñM

4s1 + M̃ds1 + M̃l̃2d̃d
FsqdG0c0sqd s46d

with

G0 = 3 1
1

2
M̃l̃s1 + d̃d

1

2
M̃l̃s1 + d̃d M̃2l̃2d̃ 4 and c0sqd = ScA

s0d

cB
s0d Dsqd.

s47d

The elements ofFsqd are

FA,A =
1

MA
2 SMA +

2

1 − j0sqlAd

3HsMA − 1d −
j0sqlAd − f j0sqlAdgMA

1 − j0sqlAd JD ,

FA,B = FB,A

= S 1

MA

1 − f j0sqlAdgMA

1 − j0sqlAd DS 1

MB

1 − f j0sqlBdgMB

1 − j0sqlBd D ,

s48d

and

FB,B =
1

MB
2 SMB +

2

1 − j0sqlBd

3HsMB − 1d −
j0sqlBd − f j0sqlBdgMB

1 − j0sqlBd JD .

Again there are two solutions for this 232 eigenvalue prob-

lem but this time the plus sign[see again Eq.(34)] yields the
physical bifurcation densityñmps for the microseparated
phase(mps),

ñmps= −
4s1 + M̃ds1 + M̃l̃2d̃d

pM
strfFsqdG0g

+ Îtr2fFsqdG0g − 4detFsqddetG0d/f2detFsqddetG0g.

s49d

Apart from the approximations made in formulating the
model, Sec. II, Eqs.(40) and (41) constitute the only two
further approximations. From Eq.(49) it is observed directly
that the spinodal segment density of the microseparated
phase scales with 1/M, contrary to the nematic spinodal, Eq.
(35), which does not depend onM. Consequently, for long
enough polymers the system will always become unstable
with respect to the microseparated phase. Furthermore, we
note that for infinitely long chainssM→`d the approxima-
tions become exact(and the density needs to be rescaled,
ñM). If the chains are not long, the approximations, Eqs.(40)
and (41) will not be valid. An interesting case is, e.g., rod-
coil copolymers whereMA =1 andMB is large. The type-A
rods will tend to form a smectic which the type-B tails are
likely to stabilize [51,52]. In this case, Eq.(39) has to be
solved numerically or in some other(approximate) way.
Moreover, the ordering of the type-A rods is then likely to be
dominated by an orientationally ordered density fluctuation,
e.g., possibly expfiq ·r gP2sq̂·v̂d, instead of the simple
expfiq ·r g which we have in the present case. Finally, we
note that the specification of the geometry is contained in the
matrix Fsqd. Using other geometries, e.g., ABABAB̄ re-
peating multiblock copolymers or branched geometries, do
not change Eqs.(39) and (49) but only the form ofFsqd.
(The only requirement is that there are no closed loops
within the polymers[33].)

V. GAUSSIAN LIMIT

In this section, we construct a consistent limit for infi-
nitely long chains of our model. There are several reasons for
this approach. First of all, there is a large body of literature
dealing with so-called Gaussian chains, i.e., polymers which
are coarse grained on the level of the radius of gyration, and
we want to make contact with those treatments[1,34]. Sec-
ond, we do not fully control the quality of the approxima-
tions, Eqs.(40) and(41), made for chains of finite length. It
is clear, however, that these approximations become exact
for infinitely long polymers. Finally, by introducing this lim-
iting case the number of effective model parameters is re-
duced, resulting in a conceptually simpler system. The limit
of MA ,MB→` does require that some of the other param-
eters be rescaled as well.

In the Gaussian limit, the relevant length scale is the ra-
dius of gyration or equivalently, the mean-square end-to-end
distance. The mean-square end-to-end distance is defined as
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x2 = o
k,k8

klkv̂k · lk8v̂k8l, s50d

wherekl denotes the average over a single chain[56]. In a
freely jointed chain there is no orientational correlation be-
tween the segments so for our block copolymers, the mean-
square end-to-end distance is simplyx2=MAlA

2 +MBlB
2. This

allows us to define the dimensionless wave number asq̃
=qx.

The Gaussian limit then becomes

Mt → `, and lt → 0 s51d

for t=A,B and with the productsMtlt
2 constant. Further-

more, also the ratiosM̃ and l̃ and therefore the mean-square
end-to-end distancex keep their values. The Onsager limit
for the segments requires that the lengths of the rods remain
much larger than their widthsslt@dtd, so the latter should
vanish equally fast,

dt → 0, s52d

for t=A,B andwith Mt
2lt

2dt (or equivalentlyMtdt) constant.

The ratio of widthsd̃ is also kept constant. Equations(51)
and(52) together constitute the Gaussian limit for our block
copolymers. This limit guarantees that the bifuration density
for MPS lies at finitechain number density,n, i.e., it can be
seen from Eq.(49) that Mñ keeps its value. The remaining

model parameters are the(geometric) ratios M̃, l̃, and d̃.
Alternatively, another set of model parameters can be con-

structed; i.e., hM̃ , l̃ ,d̃j→ hM̃2l̃2d̃,M̃l̃s1+d̃d ,M̃l̃2j. Here,

M̃2l̃2d̃ is the total excluded volume of the B blocks of two
different polymers in units of that of the A blocks and
1
2M̃l̃s1+d̃d is the total excluded volume of an A block with a
B block in units of that of two A blocks. The third quantity

M̃l̃2 is the ratio of the sizes of the Gaussian A and B coils of
a polymer.

We want to take the Gaussian limit in such a way that the
nematic and microseparated bifurcation densities remain of
the same order of magnitude so that we can compare them.
This extra requirement is nontrivial as can be seen from Eqs.
(35) and (49) because our dimensionless densityñmps scales
with 1/M (and thus vanishes in the Gaussian limit) andñnem
is independent ofM. We can cure this divergence in a some-
what unconventional way by letting the difference in thick-

ness of the A and B segments vanish,d̃→1. In this way, the
incentive for MPS is much reduced andñmps “pulled up” to
nonzero densities comparable toñnem. This is corrected by
letting thechain number densityn go to infinity in order to
keep the effective strength of the interaction constant. So in
addition to Eqs.(51) and (52), we have

d̃ → 1 and n → ` s53d

with D̃2=Ms1−d̃d2 and ñ=2nsMAlA
2 dA +MBlB

2dBd constant.

Then, our reduced model has three parameters,M̃ and l̃,
governing the composition and relative size of the copoly-

meric blocks, andD̃, describing the remaining(infinitesimal)
difference in thickness between the two components and

hence effectively setting the incentive for demixing. Again,
other (possibly more suitable) sets of model parameters

could be constructed fromhD̃ ,M̃ , l̃j, e.g., in literature on
block copolymers, length asymmetry is often characterized
by a parameterf which ranges from 0(only A part) to 1
(only B part) and which in our case would be identical to

M̃l̃ / s1+M̃l̃d. However, we have not explored this and simply

use the parametershD̃ ,M̃ , l̃j which appear naturally in our
approach.

In our Gaussian limit, the determinant ofG2 goes to zero,

det G2=−1
4M̃l̃2s1−d̃d2→0. Consequently, we can expand

Eq. (35) for small detG2 and we obtain for the nematic
bifurcation density in the Gaussian limit,

ñnem=
32s1 + M̃l̃2d

ptrG2sd̃ = 1d
=

32

p
, s54d

which, conveniently, is a constant independent of model pa-
rameters. Setting the first element of the eigenvector to 1,
cnem=s1,cnemd, this is very simple in the Gaussian limit,

cnem= l̃. Therefore, at the bifurcation of the nematic solution,

the infinitesimalorientational order of the B segments isl̃
times larger than that of the A segments[31].

Concerning MPS, we first calculate the elements ofF in
the Gaussian limit,

FA,A =
12

qA
2 H1 −

6

qA
2 s1 − e−qA

2 /6dJ ,

FA,B = FB,A =
6

qA
2 s1 − e−qA

2 /6d 6

qB
2 s1 − e−qB

2/6d ,

FB,B =
12

qB
2H1 −

6

qB
2 s1 − e−qB

2/6dJ , s55d

with

qA
2 =

q̃2

1 + M̃l̃2
and qB

2 =
q̃2M̃l̃2

1 + M̃l̃2
. s56d

The determinant of G0 also goes to zero, detG0=

−1/4M̃2l̃2s1−d̃d2→0. Next, expanding Eq.(49) for small
det G0 as well, we obtain for the bifurcation density of MPS
in the Gaussian limit,

ñmps= − lim
d̃→1

4s1 + M̃ds1 + M̃l̃2d̃d
pM

trsFG0d
det F det G0

=
16s1 + M̃ds1 + M̃l̃2d

pD̃2M̃2l̃2

trsFG̃0d
detF

, s57d

with G̃0= limd̃→1G0,
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G̃0 =F 1 M̃l̃

M̃l̃ M̃2l̃2
G . s58d

Additionally, we note the symmetry in the A and B types,

i.e., the transformationhD̃ ,M̃ , l̃j→ hD̃ ,1 /M̃ ,1 /l̃j leaves the
results unchanged. Again, writing the eigenvector as follows,
cmps=s1,cmpsd, we obtain a simple expression in the Gauss-

ian limit cmps=−1/M̃l̃. This is the relative magnitude of the
infinitesimalinhomogeneousorder of component B over that
of A at the bifurcation. The minus sign is due to the differ-
ence ofp in phase between the density waves of A and B,
i.e., where the density of A is enhanced, the density of B is

depressed(eip=−1). The absolute value 1/M̃l̃ is ratio of am-
plitudes of the two waves. We note that no assumptions have
been made with respect to the symmetry of the nascent mi-
croseparated phase. This symmetry only appears in a higher-
order bifurcation analysis[57] which we do not consider
here. The matrixF contains the correlations within the poly-
mer and is seen to feature the so-called Debije functions,
gDsxd=s2/xdh1−s1/xds1−expf−xgdj reflecting the Gaussian
character of the correlations. In the Leibler approach[34]
these appear in a similar way and therefore the correlations
are treated on the same level.

VI. RESULTS

A. Bifurcation density

In Fig. 2, we have plotted the analytical bifurcation den-
sity of the microseparated phase, Eq.(57), as a function of

the wave vector for various values ofM̃. Most importantly,
all curves have a minimum for a certain wave vector. Inter-
preting the bifurcation point as the spinodal, where the iso-
tropic fluid phase changes from being stable to unstable, the
system becomes first unstable for fluctuations with a wave
length corresponding to the minimum density. We have also
plotted the nematic bifurcation density, being a constant in-
dependent of the wave numberq̃, in Fig. 2. For the curves
which lie totally above the horizontal line, the system be-

comes unstable with respect to the nematic phase at the den-
sity ñ= ñnem=32/p. For a curve of which the minimum
reaches below the horizontal line, the system becomes un-
stable with respect to a microseparated phase with wave

length l̃min=2p / q̃min at the minimum densityñ= ñmps
smind. In

Fig. 2, we have set the A and B segments to equal length,

l̃ =1 and the demixing parameter isD̃=4. Starting with an

asymmetric polymer,M̃ =5, MPS only occurs for high den-
sities. Making the polymer more symmetric and decreasing

M̃ to one, the curves shift to lower densities until atM̃ =1 it

is at its lowest position. Upon a further decrease ofM̃, fol-

lowing the sequenceM̃ =h1, 1
2 , 1

3 , 1
4 , 1

5
j, we again follow the

same curves in Fig. 2 due to the symmetryhD̃ ,M̃ , l̃j
→ hD̃ ,1 /M̃ ,1 /l̃j and the choicel̃ =1, but now from the bot-
tom to the top.

We have numerically determined the minimum of the
MPS bifurcation density with respect to the wave vector, Eq.

(57), and plotted that in Fig. 3 as a function ofM̃ for a few

different l̃. We observe the same trend we saw in Fig. 2: for

very asymmetric polymers,M̃ !1, the minimum MPS bifur-

cation density is very high. IncreasingM̃, the bifurcation

density goes down until a certain valueM̃ (depending onl̃)
after which it goes up again. As shown in Fig. 3 some of the
curves reach below the horizontal line marking the stability
limit of the isotropic phase towards nematic ordering. Con-
sequently, in the intermediate region the microseparated
phase is probably the most stable phase, whereas for the
more asymmetric polymers MPS is likely to be pre-empted
by the nematic phase. Furthermore, there is also a depen-

dence onl̃, i.e., increasing the asymmetry between the A and

B segments(l̃ or 1/l̃ @1), the curves shift to higher densities.

We note that the curves forl̃ can be mapped on those for 1/l̃
due to symmetry in the model parameters. In the inset of Fig.

3 we have plotted the value of the wave lengthl̃=2p / q̃

corresponding toñmps
smind vs M̃. There is a rough correspon-

FIG. 2. Bifurcation density for the microseparated phase vs the

magnitude of the wave vector forl̃ =1 and D̃=4 and M̃
=h5,4,3,2,1j (from top to bottom). The nematic bifurcation den-
sity ñnem=32/p<10 and has no wave dependence but is drawn as

a straight line for comparison. Due to symmetry(hM̃ , l̃j
→ h1/M̃ ,1 /l̃j) the curves forM̃ are the same for 1/M̃.

FIG. 3. The minimum of the bifurcation density for the mi-

croseparated phase vs lnM̃ for D̃=4 andl̃ =h0.25,0.5,1,2,4j (right
to left). The nematic bifurcation densityñnem=32/p<10 is con-
stant and drawn as a straight line for comparison. Inset: the wave
length for which the bifurcation density of the microseparated phase

is a minimum,l̃min=2p / q̃min vs M̃ for the same parameters;D̃=4

and l̃ =h0.25,0.5,1,2,4j (also from right to left).
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dence as a function ofM̃ in that the lower the MPS bifurca-
tion densities in Fig. 3 connect to the higher wave lengths in
Fig. 3 (inset). In general, we have observed that the wave
lengths for which the MPS is the stable phase(over the nem-
atic) roughly lie between 1 and 1.5 times the mean end-to-
end distancex, i.e., the polymers get somewhat stretched at
the phase transition, which is consistent with a more aniso-
tropic shape of the polymer coil.

B. Phase diagrams

In Figs. 4 and 5 we present the phase diagrams. We have
numerically computed the model parameters for which the
minimum MPS bifurcation density equals the nematic bifur-
cation density. In Fig. 4, the phase diagram is given in terms

of M̃ vs D̃ for equal length segments,l̃ =1. For low D̃ the
incentive for MPS is too weak and the MPS bifurcation den-
sities are higher than the nematic ones everywhere. Increas-

ing D̃, the MPS becomes stable forM̃ =1 (totally symmetric

diblock copolymer) and increasingD̃ further the range ofM̃
for stable MPS grows correspondingly. This is not surprising

as the MPS bifurcation density scales simply with 1/D̃2. The
inset of Fig. 4 shows the vertical scale logarithmically to

show the symmetry with respect toM̃→1/M̃. In Fig. 5, the

phase diagram is plotted forM̃ vs l̃. The same observation as
in Sec. VI A can be made: for asymmetric polymers, the
nematic phase is the most stable whereas for more symmetric
ones the MPS can be stable. Of course the amount of area in

Fig. 5 depends sensitively onD̃. Note that l̃ plays a very

similar role asM̃. Naively, one might expect that a difference
in lengths of the segments would also increase the tendency
to microphase separate or at least not counteract to it. How-
ever, this is not the case, and only the difference in thickness,
even though only infinitesimally small in the Gaussian limit,
drives the occurrence of MPS, in line with earlier work on
binary mixtures of rods[20]. Potentially, length differences
between the component rods could drive MPS within the
nematic phase, but probing this would require the numerical
solutions to the full self-consistency problem, currently be-
yond our scope.

C. Inhomogeneous order parameter along the polymer

The elements of the eigenvectors at the bifurcation point
as discussed in Secs. IV B and IV C contain information
about the relative amplitude of the nascent ordering with
respect to the homogeneous and isotropic parent phase.
However, by construction these quantities were averaged
over all segments either of type A or B. In case of the nem-
atic ordering, this also coincides exactly with the order of
each of the segments individually as there is no orientational
coupling between the segments and these therefore behave as
being independent. However, in case of MPS, there clearly is
a spatial coupling between the segments and, consequently,
one would expect a different degree of ordering for segments
which are close to the free end than for segments of the same
type which are close to the joint. For symmetric polymers,
those segments which are close the joint are subjected to two
counteracting density waves and will order less than those at
the free ends. In order to quantify this inhomogeneous order
along the polymer, we have to compute the components of
the M-dimensional vectorcm

s0d [Eq. (43)]. In Appendix C we
explain how these are obtained from the type-averaged two-
dimensional eigenvectorsct

s0d by means of an additional
quantity: the half type-averaged matrixF8. In the Gaussian
limit, this M-dimensional vector reduces to the following
two-dimensional eigenvector(with a prime):

c08ssd = Sc8A
s0dssP Ad

c8B
s0dssP Bd

D , s59d

which now depends, on the continuous labelsP f0,1g, where

sP f0,1/s1+M̃dg implies sPA and sP f1/s1+M̃d ,1g im-
pliessPB. In Figs. 6 and 7 we plot the components ofc08ssd
along the polymer(as a function ofs) for increasingM̃ and l̃,

respectively. The demixing parameter is taken to beD̃=4.
We emphasize that no symmetry of the underlying mi-
croseparated phase has been assumed.

In Fig. 6 we start from the symmetric case,M̃ =1 and l̃
=1 where the profile is also symmetric arounds=0.5. All A
segments have a positive inhomogeneous order parameter

FIG. 4. Phase diagram,M̃ vs D̃ for l̃ =1. For the region marked
with “Nem,” the lowest bifurcation density is the nematic and for
the region marked with “MPS” this is the microseparated phase.
The inset is the same phase diagram except that the vertical axis is

logarithmic to show the symmetry with respect tohM̃ , l̃j
→ h1/M̃ ,1 /l̃j.

FIG. 5. The same as Fig. 4, but nowM̃ vs l̃ for D̃=4. The inset
shows both axes logarithmically.
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(i.e., ordering with the density wave of A) and all B seg-
ments have negative order(density wave of B) and the av-

erage of A and B is +1 and −1/sM̃l̃d=−1, respectively. As
expected, the segments close to the joint nearly have zero
order, whereas closer to the ends the order is larger. Increas-

ing M̃, the B part of the polymer becomes larger than the A
part and the joint shifts to the left. The normalization remains
such that average order of the A segments is still 1 and that

of the B segments is −1/sM̃l̃d=−1/M̃. However, it is re-
markable that the B segments close to the joint obtain a

positive order with increasingM̃, i.e., they order with respect
to the density wave of A instead of that of B. This is due to
the fact that in the polymer there is much more material from
the B part. Consequently, this effect becomes stronger for

largerM̃. In Fig. 7, we start again from the symmetric case,

M̃ =1 and l̃ =1. Subsequently, the ratio of lengthsl̃ is in-
creased and we see that the derivative of the profile tos
jumps at the joint. Furthermore, as in Fig. 6, the joint shifts
to positive values but here the A segments have a much more

constant profile than the B segments. By increasingl̃ while

M̃ remains constant one effectively increases the amount of
material in the B part of the polymer. Therefore it is not

surprising that the point of zero order shifts to the right.
Additionally, the B segments are much longer and therefore
the spatial correlations persist over largers explaining the
more smooth profile on the B side. It has to be noted that

some of the profiles(especially for higher values ofM̃ and l̃
in Figs. 6 and 7, respectively) are taken at bifurcation densi-
ties far above the nematic bifurcation. We have, nevertheless,
included them, being instructive in explaining the observed
trends.

VII. CONCLUSION

We have considered a fluid of freely jointed hard diblock
copolymers. The two polymer blocks A and B consist of
slender Onsager rods of different dimensions interacting via
hard body repulsion only. We apply a DFT approach in the
second virial approximation from first principles, and ana-
lytically construct local solutions to the stationarity equa-
tions, by means of a stability(bifurcation) analysis of the
isotropic phase. Spatial as well as orientational degrees of
freedom are taken into account and consequently we obtain
the spinodal densities for both the microseparated and the
nematic phases. It is shown that for long polymers the sys-
tem always becomes unstable with respect to the microsepa-
rated phase first. Consequently, this means that entropy can
induce MPS in much the same way as it has been found to
induce other forms of spontaneous ordering before. Further-
more, the mechanism is determined solely by the(difference
in) dimensions of the rods and therefore has a conceptually
simple geometric origin.

In order to make contact with the literature on thermotro-
pic block copolymers we take the limit of infinitely long
polymers in which the approximations become exact. In ad-
dition, by assuming a vanishing difference in thickness of the
two types of rods, we can still study the competition of the
microseparated with the nematic phase. We present phase
diagrams in terms of model parameters showing the regions
of stable microseparated or nematic ordering. We also
present the inhomogeneous order parameter along the poly-
mer at the bifurcation of the microseparated phase.

In the present study, we have solved the stationarity equa-
tions up to first order in a bifurcation analysis. This yields,
apart from the location of the spinodal or bifurcation density,
only the magnitude of the density wave vector and the
spherical harmonic mode to which the isotropic solution be-
comes unstable. However, the symmetry of the bifurcating
microseparated solution is typically determined by one or
more mutually independent(but equally long) vectors span-
ning the periodic phase(e.g., lamellar, hexagonal, or bcc). In
order to obtain information on the mutual orientation of these
lattice vectors, and thus on the symmetry of the phase, a
higher order bifurcation analysis should be performed
[32,57,58]. From these higher order bifurcation equations, it
is also possible to determine whether the phase transition is
of first or second order and in the latter case one could in
principle go on to construct the full equilibrium solution far
away from the bifurcation point[32].

We have not checked the validity of the approximations,
Eqs.(40) and (41), for finite values ofM. However, we can

FIG. 6. Relative inhomogeneous order parameter along the
polymer at bifurcation in the microseparated phase,c8A

s0dssd for s

P f0,1/s1+M̃dg and c8B
s0dssd for sP f1/s1+M̃d ,1g. Parameters are

D̃=4, l̃ =1, andM̃ =h1,1.5,2,3,4,5,7,10j (increasing in the direc-
tion of the arrow). The normalization is such that the averages over

c8A
s0dssPAd and c8B

s0dssPBd equal cA
s0d=1 and cB

s0d=−1/sM̃l̃d, re-
spectively. The full circles indicate the “joints” of the A and B parts

at s=1/s1+M̃d.

FIG. 7. The same as Fig. 6, but now forD̃=4, M̃ =1, and l̃
=h1,1.5,2,3,4,5,7,10j (increasing in the direction of the arrow).
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make a crude estimate,a posteriori, by concluding from Fig.
3 that the bifurcating wave length is of the order of the mean
square end-to-end distance,l̃=l /x,1. Consequently, the
wave vector is approximatelyq̃=2p / l̃,2p and if we as-
sume for a moment that the type-A rods and type-B rods are
more or less equally long, then the mean-square end-to-end
distance isx2,MlA

2 . This in turn implies that the next order
corrections in Eqs.(40) and (41) will be of order s 1

2qlAd2

,s 1
2 32pd2/M ,10/M. [In fact, the first order correction in

s 1
2qlAd in Eq. (41) does not contribute to the value of the

bifurcation density, but only to the form of the eigenfunc-
tion.] Consequently, already for this crude test case, the
length of the polymer should beat least longer than
10 sM .10d in order for the corrections to be smaller than
the leading term. This suggests that much higher values ofM
are required for the present approach to yield quantitative
agreement with the “true” behavior.

In any case, it would be very interesting to extend the
present approach to finite values ofM. However, this is not
straightforward, as the correlations within the chain would
become non-Gaussian. One strategy could be to solve Eq.
(39) directly numerically but this could become tedious for
large numbers of segments. Another strategy would be to
make an expansion in 1/M using the Gaussian limit as a
reference state. This last route was followed by Fredrickson
and Helfand[36] for Leibler’s diblock copolymers and the
results were confirmed by simulations[38]. Indeed, there is a
need for such a better-than-Gaussian treatment, especially
when the typical ordering length scales are of the same sizes
as the components, e.g., for side chain liquid crystalline
polymers forming a smectic[59,60].

As already mentioned in the Introduction, there is as yet
no experimental system exhibiting MPS due to the mecha-
nism described in this paper. However, considering the on-
going progress in the field of bio-engineering[27,61], it may
become possible to prepare such a system. We mention again
the possibility of long and thin polymers connected to TMV
rods in an appropriate solvent. The solvent may be a problem
as we have the double requirement that the polymers are at
their u point and that at the same time the TMV rods still act
as hard particles. Still, such a system of entropic rod-coil
copolymers could be directly compared to the simulation
studies of Refs.[51,52]. Additionally, it would be described
by Eq.(39), which would then have to be solved for the case
of MA =1 and MB large. In a more general context, it be-
comes increasingly clear that entropy-induced effects play a
prominent role in vivo [62], and it may be that similar
mechanisms as described here prevent demixing tendencies
due to local constraints[61]. On the other hand, the mecha-
nism may also be of relevance in thermotropic systems
where the two components of block copolymers also have
short-range anisotropic repulsions which are usually of dif-
ferent range. In any case, observing entropy-induced mi-
crophase separation in monodisperse systems would cer-
tainly be an interesting experimental challenge.
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APPENDIX A: FOURIER TRANSFORMED SEGMENT-
SEGMENT MAYER FUNCTION

The Mayer functionfk,k8 of two cylindrical rodlike seg-
mentsk [with dimensionslk,dk, and coordinatessr k,v̂kd] and
k8 [with lk8 ,dk8 and sr k8 ,v̂k8

8 d] interacting via a hard-core
potential(i.e., =` ,0 if overlap/no overlap) is given by

fk,k8sr k − r k8
8 ,v̂k,v̂k8

8 d = H− 1 if overlap

0 if no overlap.
sA1d

We decompose the spatial vectorr k,k8=r k−r k8
8 in terms of the

orientations,

r k,k8 = xkv̂k + xk8v̂k8
8 + xk,k8v̂k,k8 sA2d

with v̂k,k8=sv̂k∧ v̂k8
8 d / uv̂k∧ v̂k8

8 u the unit vector in the perpen-
dicular direction. There is overlap between the two rods for
the following ranges of the coefficients: xk
P f−lk/2 ,lk/2g, xk8P f−lk8 /2 ,lk8 /2g and xk,k8P f−sdk

+dk8d /2 ,sdk+dk8d /2g. Next, the Fourier transform of the

Mayer functionf̂k,k8 is given by

f̂k,k8sq,v̂k,v̂k8
8 d =E dr k,k8e

−iq·r k,k8fk,k8sr k,k8,v̂k,v̂k8
8 d,

sA3d

where the volume of the infinitesimal element is given by
dr k,k8= uv̂k∧ v̂k8udxkdxk8dxk,k8. Consequently,

f̂k,k8sq,v̂k,v̂k8
8 d=− uv̂k ∧ v̂k8

8 uE
−lk/2

lk/2

dxkE
−lk8/2

lk8/2

dxk8

3E
−sdk+dk8d/2

sdk+dk8d/2

dxk,k8expf− isxkq · v̂k

+ xk8q · v̂k8
8 + xk,k8q · v̂k,k8dg

=− lklk8sdk + dk8duv̂k ∧ v̂k8
8 u j0S1

2
lkq · v̂kD

3 j0S1

2
lk8q · v̂k8

8 D j0F1

2
sdk + dk8dq · v̂k,k8G

sA4d

with the spherical Bessel function of zeroth order given by
j0sxd=sin x/x. In the Onsager limit of very slender rods,
lk, lk8@dk,dk8 while lklk8sdk+dk8d stays finite. In our system,
we expect the wave length of the microseparated phase to be
at leastof the order of the lengths of the segments(although
for large number of segments it is even much larger). Con-
sequently, in this case,usdk+dk8dqu!1 and we use the lead-
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ing order, which isj0f 1
2sdk+dk8dq ·v̂k,k8g=1. Then, our final

result for the Mayer function is

f̂k,k8sq,v̂k,v̂k8
8 d = − lklk8sdk + dk8duv̂k ∧ v̂k8

8 u

3 j0S1

2
lkq · v̂kD j0S1

2
lk8q · v̂k8

8 D .

sA5d

APPENDIX B: EIGENFUNCTIONS OF f̂k,k8„v̂ ·v̂8… FOR
q=0

For q=0, the Fourier transformed Mayer function is

f̂k,k8sv̂ · v̂8d = − lklk8sdk + dk8duv̂ ∧ v̂8u

= − lklk8sdk + dk8dÎ1 − sv̂ · v̂8d2 sB1d

and is therefore uniaxial, i.e., dependent on a single planar
angleg=arccossv̂ ·v̂8d. Therefore we can expand it in terms
of Legendre polynomials,

f̂k,k8sv̂ · v̂8d = − lklk8sdk + dk8do
j=0

`
2j + 1

4p
sjPjsv̂ · v̂8d,

sB2d

with sj =2pe−1
1 dxÎ1−x2Pjsxd. Then, using the decomposition

in terms of spherical harmonicsYj ,i, we can rewrite this as

f̂k,k8sv̂ · v̂8d = − lklk8sdk + dk8d

3 o
j=0

`

o
i=−j

j
2j + 1

4p
sjYj ,isv̂ · ẑdYj ,i

* sv̂8 · ẑd,

sB3d

with the asterisk denoting the complex conjugate andẑ some
unit vector. It is now directly seen that the Legendre polyno-
mials are eigenfunctions off̂k,k8sv̂ ·v̂8d,

E dv̂8f̂k,k8sv̂ · v̂8dPjsv̂8 · ẑd = − lklk8sdk + dk8dsjPjsv̂ · ẑd.

sB4d

APPENDIX C: INHOMOGENEOUS ORDER PARAMETER
ALONG THE POLYMER

It is possible to calculate the bifurcating order within the
polymer. In case of freely jointed chains in the nematic phase
this is trivial as this exactlyct

s2d for a segment of typet.
However, in the case of MPS, segments of type A close to
the “joint” with B segments will typically be more affected
by the B part of the polymer than segments of type A far
away from the joint. This inhomogeneous order parameter
within the polymer can be obtained by calculating the ele-
ments of theM-dimensional vectorc08 with elementscm

s0d and
mP h1, . . . ,Mj [see Eq.(43)]. Therefore we proceed by de-
fining the matrixF8 (with a prime)

FmPt,t8
8 =

1

Mt8
o

k8Pt8

Fm,k8, sC1d

where the average is only performed over the second label
and thereforeFm,t8

8 is M 32 dimensional. Then, if the bifur-
cation density for the microseparated phaseñmps and the cor-
responding eigenvectorcmps has been calculated beforehand
[from Eq. (49)], c08 can be computed by evaluating

c08 = −
pñmpsM

4s1 + M̃ds1 + M̃l̃2d̃d
F8G0cmps. sC2d

The elements ofF8 are given by

FmPA,A8 =
1

MA
S1 +

2 − f j0sqlAdgm−1 − f j0sqlAdgMA−m

1 − j0sqlAd D ,

sC3d

FmPA,B8 =
1

MB
f j0sqlAdgMA−m1 − f j0sqlBdgMB

1 − j0sqlBd
, sC4d

FmPB,A8 =
1

MA
f j0sqlBdgm−MA−11 − f j0sqlAdgMA

1 − j0sqlAd
, sC5d

FmPB,B8 =
1

MB
S1 +

2 − f j0sqlBdgm−1−MA − f j0sqlBdgM−m

1 − j0sqlBd D ,

sC6d

where mP h1, . . . ,MAj when mPA and mP hMA

+1, . . . ,Mj when mPB. For each of these elements again
holds that the average ofm yields the matrixF [see above
Eqs.(45) and (48)], i.e.,

Ft,t8 =
1

Mt
o
mPt

FmPt,t8
8 . sC7d

In the Gaussian limit, we have to define a continuous “label,”
s=m/M, with m andM going to infinity such thats keeps its
value. Consequently,sP f0,1g andF8 becomes

FA,A8 ssP Ad =
6

qA
2 S2 − expF−

qA
2

6
ss1 + M̃dG

− expF−
qA

2

6
f1 − ss1 + M̃dgGD , sC8d

FA,B8 ssP Ad =
6

qB
2 S1 − expF−

qB
2

6
GD

3expF−
qA

2

6
f1 − ss1 + M̃dg, sC9d

FB,A8 ssP Bd =
6

qA
2 S1 − expF−

qA
2

6
GD

3expF−
qB

2

6 Ss
1 + M̃

M̃
−

1

M̃
DG , sC10d
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FB,B8 ssP Bd =
6

qB
2S2 − expF−

qB
2

6 Ss
1 + M̃

M̃
−

1

M̃
DG

− expF−
qB

2

6
s1 − sd

1 + M̃

M̃
GD , sC11d

where sP f0,1/s1+M̃dg when sPA and sP f1/s1+M̃d ,1g
when sPB. Note that in the Gaussian limitF8 is simply a

232 matrix, however, withs dependence. Consequently, un-
like F, F8 is not symmetric. Additionally, also the
M-dimensional eigenvector becomes two dimensional,

c08ssd = Sc8A
s0dssP Ad

c8B
s0dssP Bd

D . sC12d

Finally, it has to be noted that in the Gaussian limit, first the
product of G0 and cmps has to be taken and only then the
limit can be applied tosG0cmpsd.
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